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MULTIFOCAL THREE DIMENSIONAL BOOTLACE LENSES

INTRODUCTION

It is well known that a two dimensional (parallel plate configuration) bootlace lens can be designed
to have more than one focal point [1-3]. Wide angle scanning capabilities of these lenses in two dimen-

sions is well established, being larger for higher numbers of focal points. Similarly, Ruze [4] has
demonstrated the wide-anele scanning canability of rvlmdrmal metal plate lenses designed to have two
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focal lines. Dion and Ricardi [5] reported on a three dlmensmnal waveguide Iens which has two perfect
focal points. The spherical-planar lens [6] is a three dimensional bootlace lens having a single focal
point. However, no three dimensional bootlace lens having more than one focal point has been
reported. [t is the purpose here to report on three dimensional bootlace lenses having two, three and
four focal points. Equations for lens surfaces are obtained first for all three cases. An analysis is
included on aperture phase errors, which shows that the scanning capability of a lens, in the scan piane,
will increase as the number of focal points is increased. Computer simulation of radiation patterns for
different scan angles confirmed this.

BIFOCAL THREE DIMENSIONAL BOOTLACE LENS

Figure 1 shows the cross section of a bifocal lens in the XZ-plane which is also the scan plane.
The points S, and S, are two conjugate foci which lie on a straight line, parailel to the X-axis, in the XZ
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plane. The feed side of the lens has a curved surface, where the pickup elements are placed. The other
side of the lens is a planar surface, where the radiating elements are placed. Flexible transmission lines
of length L are used in connecting pickup elements to the corresponding radiation elements. The line
§,C makes an angle o with the negative Z-axis. It is required that the main beam lie in I/W-plane and
is directed at an angle —a to the W-axis when the feed is placed at S}, and « to the W-axis when the
feed is at S,.
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Fig. 1| — Bifocal lens geometry in XZ-plane

Manuscript submitted on December 2, 1980.
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Lens surfaces are obtained by using the following procedure. The lens cross section in the XZ-
plane is obtained first by treating the problem as if it is a two dimensional case with the specified
number of focal points. Then, the inner lens surface is obtained by rotating the inner lens cross section
with the feed line (straight line passing through the focal points) as the axis of rotation. The outer sur-
face is obtained by simply extending the outer cross section of the lens in positive and negative direc-
tions of the Faxis, If S| and 5, are two focal points for the lens cross section in XZ-plane, it is not
difficult to verify that they are also perfect focal points for the three dimensional lens obtained by using
the above procedure. The same procedure is applied later, to trifocal and quadrufocal Ienses.

In what follows, the lens parameters are determined by using the fact that the path length from
the focal point to any point on the corresponding wave front is a constant. Applying this condition to
the two rays emanating from 5, in Fig. 1, we have

S;P+L+ Usina=F+ L, {n

» L, are the transmission line fengths at a general point P and the origin C respectively,

SP=~(X—Fsina)+(Z+ Fcosa)l 2)

Similarly, applying path length equality between a general ray and the ray passing through the ori-
gin, which emanates from 55, one obtains

S;P+L—Usina=F+ 1L, 3

where

$;P=~{X+ Fsina)+ (Z + F cosa)™. {4)

The following relation can be obtained using equations (1) and (3):

S\P— S,Pl=—4Usina (F+ L,— L), (5)

From Eqs. (2) and {4}, one cbtains

S:PP~ 5P =—4 FX sina. (6

Since the left hand side terms of Egs. {5) and (6) are equal, the right hand side terms shouid be
equal. This will be satisfied if the transmission fine lengths are equal, and the X-coordinate of a pickup
element is equal to the U-coordinate of the corresponding radiating element. Therefore we oblain

L=L,and X = U, N

Eliminating L and U from (1) using (7) and substituting S, P from (1) in (2) gives the inner lens
cross section in the XZ-plane and is given by

(F—Xsina)=F+ X'+ 224+ 2FZ cosa — 2 FX sina. &

Rearranging the terms in Eq. (8), we have

Z + X cos’a + 2 FZ cosa = 0.

A~
)
Wt

As discussed earlier, the inner lens surface can be obtained by rotating the cross secten given by
Eg. {9} about the feed line {line passing through the two foci). Therefore, the equation for the inner

lens surface is given by

2P+ Xlcosta + Y2+ 2 FZ cosa = 0. (i0)
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The corresponding ¥ coordinate of the radiating element can be obtained from ¥ = Y and U-
coordinate is given by (7).

Equation (10) is the mathematical expression of a spheroid whose trace in the XZ-piane is given
by Eq. {9), which can be rewritien as

X, (Z+Fcosa)? _

+ 1, (11)
F? F? cos’ w
i.e., an ellipse with foci at the two focal points S| and S;, and the trace of Eq. (10) in the YZ-plane is
Y24+ (Z + F cosa)? = F? cos’ a, (12)

i.e., a circle of radius F, = F cos .

It is noted that the Egs. (10), (11), and (12), representing the contour of the inner surface of the
lens, are the same as Eqgs. (3), (4) and (5) of Dion and Ricardi [5]. However, for the lens being dis-
cussed here, the outer surface is planar and the path lengths between the surfaces is a constant,
whereas, for the waveguide lens discussed by Dion and Ricardi [5], the outer surface is an ellipsoid
(given by their Eq. (6)) and the path lengths between two surfaces are unequal.

The bifocal lens is symmetrical with respect to the YZ-plane and axially asymmetric. It may be
noted that, if the two foci are allowed to merge together on the axis of the lens, the angle e becomes
zero. Under this condition the lens becomes axially symmetric with the surface facing the feed becom-
ing a segment of a sphere centered at the feed while the opposite surface is still planar. This limiting
case corresponds to the geometry of a spherical-planar lens discussed by Patton [6], which is a single
focus lens. As an example, Fig. 2 shows the bifocal lens cross section in the XZ-plane for a = 10°
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! 0.3
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Fig. 2 — Cross section of a bifocal lens in XZ-plane, & = 10°
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APERTURE PHASE ERRORS: BIFOCAL LENS

When a feed is placed at one of the focal points, the emitted phase-front corresponds to a con-
stant path-length {no phase errors). However, when the feed is displaced from those focal points 1o
scan the beam 1o other angles. the corresponding wavefront will have some phase errors. If the feed
displacement is confined to the line passing through the two focal points, the phase errors will be
independent of the Y-coordinate (hence V-coordinate) and depends only on the X-coordinate {or -
coordinate} and the scan angle 8. Therefore, to know the aperiure phase errors, one needs to find only
the phase errors on the aperture cross section in the UW plane. It is the purpose of this section to
study these errors for a bifocal lens and compare the results with that of a singie forus lens. For this
purpose, the feed is assumed to be located at an arbitrary point R on a line which is parallel to the X-
axis and passes through the focal points, as shown in Fig. 1.

Let the line RC make an angle § with the negative Z-axis. Then, the main beam direction should
be at an angle @ from the W.axis, as shown in Fig. 1. The coordinates of the feed point R are given by
(—Fcose tan®, 0, — F cosa).

The path-length from the feed position R to the wavefront, for a ray passing through a point
P(X, Z), is given by

L,=RP+L,— Usind, 13
and for the ray passing through the origin C, i1 is given by
L.=RC +L,. (14)
The path-length error is given by
AL=1L,~L.=RP—-RC- Usiné. 15

From Fig. 1, one can obtain the values of RP and RC as
RP=(X+ Fcosa tan 8 + (Z + F cos )2 (16}

and
RC = F cos afcos 6. (17

Eliminating Z from (16} using (9) and then substituting RP and RC values in {15), the normat-
ized path length error is given by

—A—éiqus‘m.‘}— ! +.\/ 1‘4 + u? sina + 2w tan B, {18}
F, cos b o8 8

where u= U/F,and F, = Feosa.

For comparisen, the path-length error for a single focus lens can be obtained from (18) by assum-
ing &« = 0 and is given by

AL
® = —yusing — i +\/ 12 + 2y tan 8. {19)
F, cos @ o5’ 8

Figure 3 shows normalized path length errors for a bifocal (@ = 109 and the single focus lens as a
function of normalized aperture & From Fig. 3, it may be noted that, when the normalized aperiure is
limited 1o 0.5, the maximum error oocurs at ¥ = —40.5 for any given scan angle #. Figure 4 shows
this maximum path error on the aperture {# = —(0.5) vs scan angle. For single focus lens, the magni-
tude of the path-length error increases as the scan angle is increased. For bifocal lens, the path error
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Fig. 4 — Path length error vs scan angle (for ¥ = -0.5)
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will be maximum for zero scan angle and decreases monotonically with the increase in scan angle,
reaching zero error at the scan angle @, Then, the magnitude of the path error increases monotonicaily
for scan angles greater than «. From Fig. 4 it may be noted that for @ = 10° the bifocal lens will have
normalized path errors less than 004 over a scanning range of *14° whereas the single focus lens can
only be scanned to slightly less than + 10° Therefore, some 40% more scanning range is possible with
bifocal lens compared to a single focus lens. Similar conclusion can be reached for the case of & = 5°,
shown in Fig. 4. As noted before, for scan angles less than «, maximum path error occurs at zero scan
angie. Figure 5 shows this maximum path error vs «. This curve wili be useful in choosing o for a
specified maximum phase (or path length) error with the understanding that the maximum scan angle
is approximaitely equal to + 1.4 o for the specified phase error.
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Fig. 3 — Peak path length error vs o for bifocal jens
with {(Fp/ D} = {

TRIFOCAL THREE DIMENSIONAL BOOTLACE LENS

It was shown that a three dimensional bootlace lens having two perfect focal points can be used as
a multiple beam antenna or can be used to scan more beamwidths compared {6 a lens having only a sin-
gle focus. However, iis scanning capability is siill limited. It will be shown that a three dimensional
bootlace Jens with three perfect focal points has a wider angle scanning capability compared to a bifocal
lens.

The trifocal lens design differs from the bifocal model in that the corresponding points on the two
lens contours (X and U components in Fig. 6} are not ﬁquidistaﬁt from the YZ—piaae This additionai
degree of {reedom in design permits specification of a third focal point. However, to be a perfect focal
point in three dimensions, the location of the third focal point should be on a line joining the pair of
conjugate foci §; and 5,, and symmetry condition dictates it {0 be on the axis of symmetry, as shown in

Fig. 6.

Figure 6 shows the cross section of a trifocal lens in the XZ-plane. The points S5, 3, and §; are
perfect focal points for radiation at angles 0, —«, and o to the W-axis, respectively. They are located,
in the XZ-plane, on a line parallel to the X-axis. The coordinates of these focal points are given by (0,

Fﬁ} (Fsineg, 0, —Fcos e), and (—~F sina, 0, —F cos «), respec!ivcly, relative to the origin C.
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Fig. 6 — Trifocal lens geometry in XZ-plane

P (X, Z), both originating from focal point §;, the condition for optical path length equality gives the
following relation:

SP+L+Usina=F+ Ly (20)

where

5P=~(X - Fsina)+ (Z + F cosa)’, (21)
L = Transmission line length at a general point P,

and Ly = Transmission line length at the origin C.

Similarly, applying the condition for path length equality of central and general rays originating
from the focal points §; and g, one obtains

S;P+ L~ Usina=F+ L, (22)
SoP + L= Fy+ L, (23)
where
S;P=+v(X + Fsina)?+ (Z + F cosa)?, 24
and
SoP =X+ (Z + Fp?. (25)
From Eqgs. (20) and (22) we have
S;PP— S, PP=4 Usina(F + Ly— L), (26)
and from Egs. (21) and (24) we obtain
5P — 5P = 4 FX sin a. (27)

Excluding the degenerate case of « = 0 (in that case S, and §; merge into a single point on axis;
consequently, there will be less than three focal points), and equating the right hand sides of Egs. (26)
and (27} one obtains

FX=U(F+L,—- L}. (28)

Equation (28) gives a relation between X, Uand L — L,. An equation relating /and L — L, can
be obtained as follows. Substituting the value of 5;P from (20) in (21} and eliminating X (but not X?)
using (28), one obtains
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X+ Z'42ZFcosa=2F (L, — LY+ {L, - LY + Ulsia’a. {29)

Similarly, substituting S, 2 from (23) in (25) we get
X4+ 7224 2ZF,=2F, (L,— LY+ (L, - L)~ 30)

The left hand sides of {29} and {30) are equal because F, = F cos «. So, equating the right hand
sides gives an equation relating and L — L, as

U;’
L—-L,= N3 cos® {a/2). 3

Equation (30) represents the cross seciion in the XZ-plane of the inner surface of the irifocal lens
with X, Uand L — L, related as shown in (28) and (31).

For specified values of design parameters e, F,, and the element location / on the radiating sur-
face, Eq. {(31) can be used to find the corresponding L — L,. Then, the corresponding value of X can
be found by substituting the known values of &, F,, I/, and L — L, in (28). Finally, the corresponding
Z coordinate of the inner lens surface can be found from (30), knowing X, F, and L — L,. By assum-
ing different values for U/, complete inner surface cross seciion in XZ-plane can be obtained. As an
example, Fig. 7 shows the cross section of a trifocal lens for &« = 15°. The three dimeansional inner
surface of the lens can be obiained by rotating this cross section about the line on which the focal
points are located. This completes the design procedure of the lens.

Requirements on the scanning range, aflowable aperiure phase errors, and the aperture size will
determine what values should be chosen for design parameters o and F,. In this regard, the analysis on
aperture phase errors, which is discissed in the next section, will be useful.

b X, Ld

3
CROSS SECTION ,—CROSS SECTION
OF THE tNNER OF THE OUTER
SURFACE P SURFACE

/{%3 N

Fig. 7 — Cross section of a trifocal lens in XZ-plane, o = 15°
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APERTURE PHASE ERRORS: TRIFOCAL LENS

When a feed is displaced from the focal points to scan the beam to other angles, there will be
some phase errors on the aperture. It is the purpose of this section to study these errors for trifocal
lens. Let R be an arbitrary feed position on the feed line (a line passing through the focal points) such
that the main beam direction is at an angle @ to the Z-axis, as shown in Fig. 6. Similar to a bifocal
lens, if the feed location is confined to the feed line, the aperturé phase errors are independent of the
coordinate V and depend only on {fand 6. Therefore, to know the aperture phase errors, one needs to
find only the phase errors on the aperture cross section in the UW-plane.

The coordinates of the feed point R are given by (— F, tan 8, 0, — F,). The path length from
feed point R to the phase front, for a general ray passing through the point P(X, O, Z) is given by

L,=RP+ L - Usins. (32)

Similarly, the path length of the central ray, passing through the origin C, is given by

.= RC + L, (33)

]

Therefore, the path length error is
AL=L,— L, =RP—-RC~—Usin¢ +L - L, (34)

From Fig. 6, one can obtain values of RP and RC as
RP=-/(X+ F,tan8) + (Z + F,)%. (35)

and

RC = F,/cos 8. (36)

Eliminating Z from (35} using (30}, one obtains
RP = [(F,/cos 8 + 2F, (L,— LY + (L — LY+ 2 X F, tan¥. (37

Substituting RP and RC values from (36) and (37) in (34) and expressing L — L, and X in terms

of U using (31) and (28), it can be shown that the normalized path length error is given by
AL
£,

=B~ ysing— (Y/cos @) +

V(l/cos0)?— 2B+ B + 2 utanf (1 — B cosa), (38)
where

u= U/F, and B = u? cos a cos? (a/2).

Figure 8 shows normalized path length errors for trifocal len
u, for a = 15° It may be noted that, similar to bifocal lens, the maximum error occurs for u = —0.5
for any given scan angle when the aperture is limited to a range of ¥ = =+ 0.5. However, the path
length error at » = 0.5 has an opposite sign compared to that at ¥ = —0.5. Therefore, the maximum
phase excursion on the aperture is proportional to the difference of path length errors at ¥ = —0.5 and
u = 0.5. This total maximum path length error is plotted as a function of scan angle in Fig. 9. For
scan angles less than a (15° in the example), the peak error occurred for a scan angle of about 9°. For
scan angles greater than a, the error increases with the increase in scan angle. It may be noted from

Fig. 9 that, for scan angles in the range of +17°, path length errors are less than .0011, whereas the
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single focus and bifocal lenses can be scanned to only £5° and = 7° respectively. From Fig. 9, it was
noted that the peak error occurs at a scan angle between O and «. This peak error increases with the
increase in«. Figure 10 shows this relationship. This curve will be useful in choosing o for a specified
peak phase {or path length) error. Once « is known, the scanning range, which is slightly larger than
+o, can ve found for specified phase errors.

QUADRUFOQCAL THREE DIMENSIONAL BOOTLACE LENS

Quadnifocal lens design differs from that of the trifocal case in that the outer surface of the lens
is noi constrained to a planar surface. This additional degree of freedom in design permiis specification
of four, rather than just three focal points. Lens symmetry dictates that those four focal points form
two conjugate pairs. Figure 11 shows the lens cross section in XZ-plane. S;, §;, S; and §; are four

i0




NRL REPORT 8465

005 —
.r:E /
a
2 004
w
o
o
'_
&
&_ 003
o«
=]
o
o
wi
I .002 —
<
o
-
<L
o
= .001 b~
X
=L
LLi
a
_4/1 l | |
0 5 10 15 20 25
- IN DEGREES
Fig. 10 — Peak total path length erfor vs a fora

trifocat lens with (F/ D) =

W

focal points for radiation at angles —a, &y, —a3, and a; to the W axis respectively. The inner lens sur-
face and locations of focal points are expressed in X, Y, and Z coordinates. The coordinates of the

1tnm lamo ouir Frnma nra awvnracoad in JJ

Ouier iChis sunace arf CXpréssea il o, V, and W As discussed earlier with other lenses the three

dimensional inner surface of the lens can be obtained by rotating the lens cross section in XZ-plane
about the feed line (the line on which the focal points are located). The outer surface of the lens will

be shown to be a part of a circular cylinder.
Applying the path length equality from the focal point 5, to the corresponding wave front yields

513+L—W005a1+Usina1=Fl+Lo, (39
where

S|P =~/(X — F sina))?+ (Z + F cos a)?, (40)

t1

155 s e
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and

F = 5C

Similar to {(39) and (40), the following relations can be obtained for focal points S|, §;, and Sy

SP+L— Wceosa;— Usina,= F| + L,, (41

SiP=~/(X + Fisina)? + (Z + F cos )’ 42

.§J’+L—Wc05a2+Usina2=F2+Lﬂ, 43

5,P=J(X = Fysinap)’+ (Z + Fycos az)’, {44)

S;)P+L— Wcosa,— Usina,= Fp+ L, 45
and

S;P=~J(X + Fysinay)’ + (Z + F, cos ay)?, (46)

2 -

where F, = §,C

™

rom 139} and {41} we obiain
SP~S5P=4(Fi+L,—L+ Wecosay) Usina,. @n

Similarly, from {40) and (42) we have

S_{}_’z—ﬁ2=4ﬂ.¥sinai‘ (48)

Excluding the case of @y = 0 {in that case S, and §; merge and becomes a special case having
less than four focal points, which is aiready discussed), it is evident that right hand sides of {47} and
{48) should be equal and the following relation is obtained:

X=AU/F)(Fi+L,— L+ Wcosay). {49)

A similar resuit to (49) can be obtained by considering Eqs. (43) to (46), instead of (39} to (42),
and is given below:

X=(U/F}{F,+ L,— L+ Wcosa;}. (50)
Equating the right hand sides of {49) and (50), noting that F; = F, cos @, = F, cos a3, the foi-
lowing relation can be obtained;

L~ Ly= Wicosa +cosnj). 531)

Equation {51) can be used to find W, knowing I — L or vice versa for given values of & and a4,
A relaiionship between U/ and Wor L — L is required to finish the lens design. This is obtained in the
following manner.

Substituting the value of 5P form (39) in (40}, squaring on both sides and eliminating X {but
not X%) using (49), one obtains
X'+ Z°+27F cosa, =L - Lp}?+ Ulsina, + Wicosla, — 2F (L - Ly
+2F, Weosa; — 2{L — Ly} Wecosa,. (52}

i2
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Using the same procedure, an equation which is similar to (52) and corresponds to second conju-
gate pair of focal points can be obtained as

X2+ Z 4+ 2Z Fycosay= (L — Le)? + U?sina, + Wlcos®a; — 2Fy(L — Ly

+2F2WCOS&2—2(L—'L0) WCOSaz. (53)

Knowmg that Fi cos &) = F; cos @y = Fo, it may be noted that left hand sides of (52) and (53)

arn aniial Taiiatismg ol bomd aidag AF (87 and (51) aliminatine § — naine (1) and gimnlifyine

are equai. l_.qua.l.lu5 1151“. Nantg siGes o1 W) and woy, Cillillinaing o 1_:0 USINE \J1; andg simpiilying,
it can be shown that

U+ (W — R)?= RE, (54)

where

Ry = Fg/cos a; cos a,.

Equation (54) defines the cross section, in the UW-plane of the outer surface of the lens. The
cross section is an arc of a circle of radius R, with a center at W = R, Therefore, the outer surface of
the lens is a part of a circular cylinder.

An equation for the inner lens cross section is obtained using the following procedure. Eliminat--
ing L — Lgand Win (52) using (51) and (54) one obtains

X2+ Z2+2Z Fy= U1 — cos? aj — cos? ay). (5%

It can be shown, using (49), (51), and (54), that U/ and X are related as
U*— UPR2 + X'RE =0, (56

U= (Ry2) (Ry— J(RE — 4X?)), . 57

where Ry is defined earlier in (54).
Substituting the value of U? from (57) in (55), one obtains the cross section in XZ-plane of the
inner lens surface as

X2+ (Z + F)t=F§ + (RY2) (Rg— /(R§ — 4XD))(1 — cos? ay — cos? a). (58)
Therefore, the inner lens surface is given by

X2+ VP +(Z+F)l=F§ + (Ry2 (Ry— /(R§ — 4X?)) (1 — cos? ay — cos? ay). 59

It is possible to eliminate the radical (square root) in (59) and obtain a fourth order equation for
the inner surface of the lens. However, it will not be done here since (59) in its present form shows
that for any given value of X, the inner surface is represented by a circular arc. For given values of F,
a), oy, and the element location U on the radiating surface, corresponding values of W and X can be

f'nnnd Iler‘ID (qd} and {56) The carresnandine value 7 can he found fram (52) Laawing v
LESSLU NS 184 WIINE AU ALV WULILOpPVIIULLLE YAluy L vall Uv Luulia L \JU}, l\uuwuls iy 1 O u:] auu

o, Transmlssmn line length L — L, can be found from (51), knowing W, a, and «,. By assuming
different values for U, complete inner surface cross section in the XZ-plane and the outer surface cross
section in the UW-plane can be obtained. As an example, Fig. 12 shows the cross section of a qua-
drufocal lens with @) = 10°and @; = 25° The three dimensional inner surface of the lens can be
obtained by rotating the cross section in XZ-plane about the line on which the focal points are located.
The complete outer surface of the lens can be obtained by extending its UW-plane cross section
towards the positive and negative V-axis. This completes the design procedure for the quadrufocal lens.

I3
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CROSS SECTION
OF THE INNER
SURFACE

CROSBS SECTION
OF THE OUTER
SURFACE

S‘?o

Srz -
Fig. 12 — Cross section of a guadrufocal lens witha; = 10° and o, = 25°

Requiremenis on the scanning range, allowable aperture phase errors, and the aperture size will
determine what values should be chosen for design parameters Fy, o), and «5. In this regard, the
analysis on aperture phase errors, which is discussed in the next section, will be useful.

APERTURE PHASE ERRORS: QUADRUFOCAL LENS

Using s procedure guite similar to that used for bifocal and trifocal lenses, it can he shown that

the normalized path-length error in the /W plane, when the beam is scanned to an angle § by placing a
feed at R as in Fig. 11, is given by

AL _ d— using — wcosé— {}cos8)
£y
4+ (1/cos 8)2 + u*(1 — cos? &; — cos? a5} + 2 x tan 8, {60)
L—-L
where d = ——,~—£,u= —.{ff-,w= —-_.gandx= —;"t-’-
£yq Fg Fyg Fy

For a given value of U, corresponding values of W, L — L, and X can be found using {34), (51)
and {(56). Substituting these values in (60), the path length error can be found for specified values of
Fy, oy, 0e; and 8, Figure 13 shows normalized path length errors for the gquadrufocal lens as a function
of normalized aperture w, and for different scan angles whene; = 11 %and o, = 25° It may be noted,
similar 1o the bifocal lens, that the maximum error occurs for 4 = —0.5 for any given scan angie when
the aperture width is limited to ¥ = £0.5. Figure 14 shows the maximum error as a function of posi-
tive scan angles for @y = 257 and for different values of o;,. For w; = 10° the peak phase error {for
angles below o) ocours at an angle betwsen o and o, The peak value ai zero degree scan angle is
smaller than the peak value between a, and a,. For ¢, = 11° those two peak values are approxi-
mately equal. For o, = 12° the peak value at zero degree scan angle is larger than the peak beiween
ey and o, These observations point to a fact that there is an optimum value of « for a given vatue of
«; which makes those two peak phase errors equal and less than the peak error for any other value of
o, Attempts to determine analytically this optimum value of o for a given a, were not successful,

14
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Fig. 13 — Path length errors in XZ-plane for a quadrufocal lens

with @, = 11° and a; = 25°
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Fig. 14 — Path length error vs scan angle for quadrufocal lens
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However, Mr. Paul Shelion suggested a method* of determining the approximate optimum value for a;
and it is given by a; = a, {383/924). Then, the corresponding peak phase error can be obtained by
substituting 8 = 0 in (60). Then, a curve, similar to Figs. § and 10, showing the peak error increasing
with angle a;, can be obtained as shown in Fig. 15. Therefore, for specified peak phase error, o, and
the corresponding optimum value of @) can be found. Once a3 is known, the scanning range, which is
slightly larger than +a, can be found using the method suggested by Mr, Paui Shelion. lsing the
approximate relation between the number of foci and maximum scan angle, as suggested by Mr. Shei-
ton, and the results of Figs. 5, 10, and 15 one can sbiain curves relating maximum scan angle for
specified maximum path length error for all the lenses as shown in Fig. 15a. From that figure it is evi-
dent that for a given maximum path-length error, a lens with a larger number of focal poinis can be
scanned to larger angles.
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o
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= /

0 4 i | 1
] 5 10 15 20 25 30
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Fig. 15 — Maximum path length error vs e, for quadrufocal lens with (Fy/ D) = 1

*Mr. Paul Shelton of NRL suggested the following analysis which can be used to find an approximate optimum value of & for an
assumed value of @3 for quadrufocal lenses, His analysis can also be used in determining the maximui scan angle for g given o
in bifocat and trifocai lenses and for & given a5 in guadruiocal lenges.

“For the mulifocai configuration, assuming that the phase error funciion is 8 polynomial in the scan angle or feed
position, then the optimum polynomial is the Tehebychefl, T,{s} = cos {n cos | 5), where x is the number of fovi snd
5 is the scan angle or feed position. Thus, the focus locations relative to maximum scan are given by § = <os {m/2n),
cos (3/2n), ete. Forn= 2, s — +0.707; for n = 3, s = 0, +0.866; and for n = 4, s = £0.383, £0.924"

Using the above approximate analysis, the relations between maximum scan angle Bo.,, and feed positions {defined by the
parameter o) are given below for lenses with different foci.

a =0T078, . for bifocal leas (n = 2)
a = 0.866 ., for trifocal lens (n = 3}
@) = 0383 gmx and

for quadrufocal lens (n = 4).
oy = 0.924 6,4,

The same Tchebychefl polvnomiat approximation can alse be used in finding the angle 6, &t which the path-length error is
maximum by finding the § value for which T,{9) is maximum. Knowing 8., 0ne ¢an find maximuom path-length errors for bi-
focal and trifocal lenses using Egs, (18) and (38} for different values of o, H was verified that there is a very close agreement

10CAE A1 GnUldl aClisis wsiiy L18) ARG a8y UNITITIN varuls

between the resnits obtained by this approximate method and those shown in Figs. 5 and 10.

16
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So far, it is assumed that the scanning is accomplished by confining the feed to a straight line
passing through the focal points. Only a limited investigation has been made on the scanning capability
in the other planes. The results show that in the orthogonal plane {¥VW-plane) the scanning capability
of multifocal lenses is limited and somewhat less than that of a single focus lens. Therefore, multifocal
lenses are useful where the required scanning in one plane far exceeds that of the orthogonal plane [7].
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Fig. 158 — Maximum scan angle vs maximum path length error for different lenses

RADIATION PATTERNS

Computer simulation is used in obtaining radiation patterns for lenses discussed in this report. In
addition to their geometries, effects of feed element pattern and pickup elements patterns are also
included. Appendix A contains a detailed discussion on computer simulation. Radiation patterns were
computed for lenses with radiating aperture of 60 A by 60 X and (F,/D) = 1. The inter-element spac-
ing is assumed to be A/2. Figure 16 shows radiation patterns of a bifocal lens with & = 5° From ear-
lier discussion on bifocal lens, it may be recalled that peak phase error occurs at zero scan angle and the
scanning range is +1.4 a. Therefore, patterns shown in Fig. 16 are the worst possible patterns, i.e.,
one at zero scan angle and the other at the scan limit. The corresponding peak error for & = 5°can be
found from Fig. 5 and is given by .06 A for 60 A aperture width and {(F,/D} = 1. For a 10 dB ampli-
tude taper on the aperture, one would expect the sidelobes to be about 21 dB below the mainlobe peak,
if there are no phase errors, With the above stated errors, which are quite small, it may be seen from
Fig. 16 that their effect on the sidelobes is negligible. Figure 17 shows two worst patterns in the scan
range corresponding to « = 7.5° The corresponding peak error, from Fig. 5, is .228 A (.0038 x 60A).
This error is not negligible and its effect on the radiation patterns can be seen from Fig. 17, i.e.,
shoulder formation.

Figure 18 shows radiation patterns for a trifocal lens with e = 1
hgs_ sn r‘h that the an Prfnrr—a edges have a 10 dB amplitude taner whe

12 Shewil WL VLY WAMEMLD LI YW & AP GLLIP/EEVLAUIG RCGRpIWL WY IS

')

(ze egree scan). From the ecarlier discussion on trifocal lenses it may be noted that there are no
phase errors for the on axis beam and for the off axis beam at the angle o (18° in the example). As is
noted from Fig. 18, the sidelobes are down by 21 dB for the on axis beam which is what one expects
for a 10 dB amplitude taper. However, the sidelobes are higher for the 18° off axis beam. This is due
to the decrease in amplitude taper on the aperture, when the feed is moved to produce off-axis beams.
Therefore, the sidelobes can only be reduced by increasing the feed size for off-axis beams. For o =
18°, the peak phase error for trifocal lenses may be obtained from Fig. 10 and is given by 0.1032 A
(0.00172 x 60A), which occurs for a scan angle of about 11°. The effect of phase errors can be seen

from natterns at scan aﬂgles of 11° and 15°, Sidelobeg are nneumm#trlrn] being hicher on one side and

ARl e & Gy Sdla IR LAY RA W wALOF L WILLES IBLIWL WLl one QLEw

8°. The feed element pattern is
n tha fo

ad ig lnratad nn tha avig
A lll\l vau A

O IUWEGVLAL UL LEw AALD
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Fig. 16 — Scan plane patierns of bifocal leas withe = 5°
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Fig. 17 — Scan plane patterns of bifocal lens with o = 7.5°
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Fig. 18 — Scan plane patterns of trifocal lens with ¢ = 18°

PATTERN AMPLITUDE IN {dB)

~40 |-

Jower on the other. Change in amplitude taper may also have some effect on the sidelobes. The value
qf a = ‘18” was purposely chosen to see the effects of phase errors. By choosing a smaller value for a
{say 15°) the effect of phase errors can be reduced. However, it may be seen that the scanning range

of a trifocal lens is at least twice as much as that of a bifocal lens.

Figure 19 shows the pattern of a trifocal lens in the orthogonal plane (¢-plane) when the beam is

scanned to 11° in 8-plane. The pattern is symmetric and sidelobes are much lower compared to those
in the scan plane.
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Figure 20 shows two scan plane patierns of a quadrufocal lens (with ey = 11° and a; = 25°), one
on boresight and the other at 20° off axis. As can be seen from Fig. 14, the peak error on the aperture
for these beams is 0.042 » {0.007 x 60x). Since this is a small error, it has negligible effect, as may be
seen from the on-axis beam. For other beams in + 27° range, peak aperture errors are smaller. The
feed pattern used in computing these patterns is such that the on-axis beam has a 10 dB amplitude
taper. However, using the same feed for off-axis beam gives slightly asymmetric amplitude distribution
with less than 10 dB iaper. This is the reason for sidelobes being higher for off-axis beam compared io
on-axis beam. This indicates that a larger feed should be used for larger scan angies 10 obtain the same
amplitude taper. Figure 21 shows patierns at 20° and 27° off-axis when feed patterns are chosen to
obtain a 10 dB taper. Sidelobes are at —20 dB level, instead of ~21 dB one would expect for a 10 dB

amplifude taper.

PATTERN AMPLITUDE [N (dB)
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Fig. 20 — Scan plane patterns of quadrufocal lens with
feed pattern independent of scan angle
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CONCLUSIONS

Three dimensional bootlace lenses having two, three and four perfect focal points are proposed.
Design equations are obtained for inner (pickup) and outer (radiating) surfaces for all three lenses.
Aperture phase errors are analyzed when a feed is moved to scan the beam to different angles in a scan
plane. The results of the analysis showed that the scanning capability of a lens increased with the
increase in number of focal points. Computer simulation of radiation patterns are also presented for all
three lenses. These results also show that a lens with a higher number of focal points can be scanned
to larger angles. Our limited investigation also showed that the scanning capability of multifocal lenses
is limited in the orthogonal plane and somewhat less than that of a single focus lens. Therefore, multi-
focal lenses are useful where the required scanning in one plane far exceeds that of the orthogonal
plane.
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Appendix
COMPUTATION OF RADIATION PATTERNS

As discussed in the text, let the radiating surface be specified in U, ¥, W coordinates. Singe the
cross section of the radiating surface is independent of the coordinate ¥, an element positicn on a radi-
ating surface can be expressed as (U, V,, W, ), where m takes on values from 1 to M and » takes on
values from 1 10 M. Therefore, there are a total of MW elements. Then, the radiation pattern can be
expressed as

2 (U, sinfcosd+ ¥, Sinf sing + W, coss +£,.)

M N ;
EG, ¢)=% 3 A, » (AD
m=1n=1 :

Where 8, ¢ are the polar coordinates of a field point,

Ay 15 the amplitude excitation of the element at (U, V,, W),

fay
]
(="

¢ .. is the phase excitation of the element at (U, V,, W, ) which is independent of V, ot .

Results obtained from phase error analysis in the text can be used io find the appropriate expres-
sions for £, for ail three ienses and wili be given Jater. The procedure and formulation io find ampli-
tude excitation 4, is similar for all three lenses and is discussed below.

Figure Al shows the geometry used in determining 4,,,. Let S be the feed position such that the
face is represented by (X,,,, Yuu Zmn), and is connected by transmission line 10 a corresponding ele-
ment Py (U,,, V,, W,) on the radiating surface. 1t is assumed that the feed element is tilted such that
ig pattern maximum js in the direction of Q. Simiiarly, the pickup element is placed such that its pat-
tern maximum is in the direction of PG. It is now evident that 4,,, depends on the feed pattern,
pickup clement pattern, angle 5., angle 4, and the distance SP. Therefore, 4, may be expressed as

Apn = Kéﬂ K,!;,,, Kfms {A2)
where K7, is feed element pattern factor,
KZ. is pickup element pattern factor,

and K2, is the distance difference factor.

Tamiamt mobimen Go aooilens R R fma £
TSI PditCi]l 15 dSOLUTICU dd d PUWTL Ul «
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ja R
o

For computational purposes, the
and is given by
— N
KL, =cos ™o B,,), (A3)

where N, is an arbitrary constant to be chosen to give proper amplitude taper. The pickup element pat-
tern is assumed to be of the form

KE. = — . (A4}
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Fig. Al — Geometry used in determining the
amplitude excitation A,,,

For the results presented in the text, B is taken as %

The distance difference factor is given by (see Fig. Al)
— F,
ki — 50 _ 1 (A5)

™  SP 0868, \f(X. +F tan0, )+ Y2 +(Z_ +

w R == Tas

To use Eqgs. (A3) and (A4) one needs to know 8, and #,,,. Referring to Fig. Al one can show

that
cos (3,,) = ag g+ Yy Yo {AB)
and
cos (0,,,) = Cps @pe + Bps Bpe + Vs Yoo (A7)
where
a, =—a, = (F,tan @, + X, )/ d,,
Bos = = Youul dyy,
Yoo == Yos = (Fo + Z,,) dyy,
ag, =sing,,
Vsg = €088,
gy = — Xyl dgp,
Bog = — Yol dep,
Yo = — (Fo + Zmn)/dg ’
dyy = F,/cos 8,,
dyp =/ Xy + F, c05 8,02 + Y2, + (Z,., + F,)%,
and

] —

Y B TS . Y]
agp_'\f"‘mn-'_ mn+(5mn+ n:)»J .
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The above formulation is common for all three lenses. They are used with the following relations
obtained by using the information given in the text for individua! lenses. In what follows, element

coordinates U, ¥, on the radiaiing aperiure, f,, aperture widih D, «, @, and «, are assumed known

of used as a variable parameter.

BIFOCAL LENS
W, =0
Kon = Uy
Y, =V

n

€2
T pn

£, = (F/cos8,) — J{F,/cos 8,02+ X2, sinfa + 2 X, F, tan @,.

e d _ Pl 3 v .2
Lign — — Fg T N Tg = Apgy VO G —

TRIFOCAL LENS
W, =0

X = U, ll — (U, /F,)? cos? & cos’ %
i £

Y, = ¥,

Zpy = — F, +~J1F, — (U2/F,) cos & cos? (/P — X2, — Y2,
£, = (Foos8,) — T~~J(FJeos 8,2 — 2T F,+ TP+ E
where T = U2 cos e cos? (a/2)/F,
and E=2 U, tan 9, {F, — T cos o).

QUADRUFOCAL LENS
X,, = U,J1— (U,/F,)} cos® o cos® a5

Ko
W, =F, ll- —m—]fcosa; €08 a3

U
Ly = W, {cos a; + ¢os az)
Ymn = Vﬂ‘

Zpw = — Fy +~JFE+ UL (1 — cos? &y — cos? ) — X2, — Y,
&, = (F,/fcos8,) — L, —

J(F./cos 8,3 + U2 (1 — cos? oy — cos? ag) + 2 Xy F, tan .
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